Commercial Scale CO₂ Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554

George J. Koperna, Jr. Shawna Cyphers Advanced Resources International

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013

Advanced Resources International, Inc.

Presentation Outline

- Program Goals
- Benefits Statement
- Project Overview
 - Goals
 - Objectives
- Technical Status
- Accomplishments to Date
- Summary
- Appendix

USDOE/NETL Program Goals

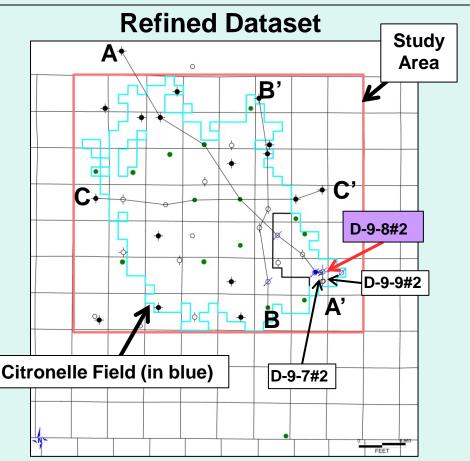
- Support industry's ability to predict CO₂ storage capacity in geologic formations to within ±30 percent.
- Develop and validate technologies to ensure 99 percent storage permanence.
- Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness.
- Develop Best Practice Manuals for:
 - monitoring
 - verification
 - accounting & assessment
 - site screening
 - selection and initial characterization

- public outreach
- well management activities
- risk analysis and simulation

Benefits Statement

The project will model commercial-scale CO_2 storage capacity optimization strategies to effectively manage the CO_2 plume and pressure field. These strategies will utilize geologic and performance data collected from SECARB's Anthropogenic Test Site, and will be high-graded based on cost and storage efficiency, considering reservoir geomechanics (pressure field) and laboratory-derived cap rock data.

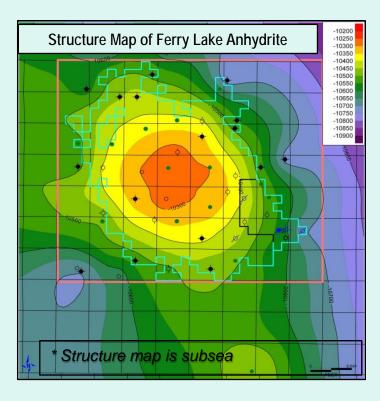
Major advances:


- Estimating commercial scale storage efficiency factors
- Generation of reduced order models
- Best Practices Manual

Project Objectives

- Optimize capacity and ensure storage containment in Gulf Coast saline and oil bearing reservoirs
- Leverage modern and historical geologic characterization and injection performance data to develop detailed geologic models
- Upscale geologic data and conduct detailed simulation of CO₂ injection
- Overlay economic and risk management scenarios for each simulation case to determine the overall feasibility of commercial scale storage.
- Conduct detailed cap rock core analysis testing
- Develop new storage efficiency factors based on these project results
- Develop reduced order models to approximate the 'super computer' results
- Summarize the results in a Best Practices Manual

Project Status: Study Area & Well Data Set


- 400+ total wells in Citronelle Field on 40-ac spacing
- Study area for geologic model = 56 sq. miles
- Geologic model characterizes injection zones and confining units from surface though the Donovan sandstones at depths >12,000 ft.
- D 9-8 #2 well in Citronelle Southeast Unit selected as Type Log for geologic correlations of injection zones & confining units.
- Multiple cross-sections constructed for geologic correlation of model layers.
- Digitized the SP & resistivity curves for 36 well logs. These data input to neural net software to estimate porosity.

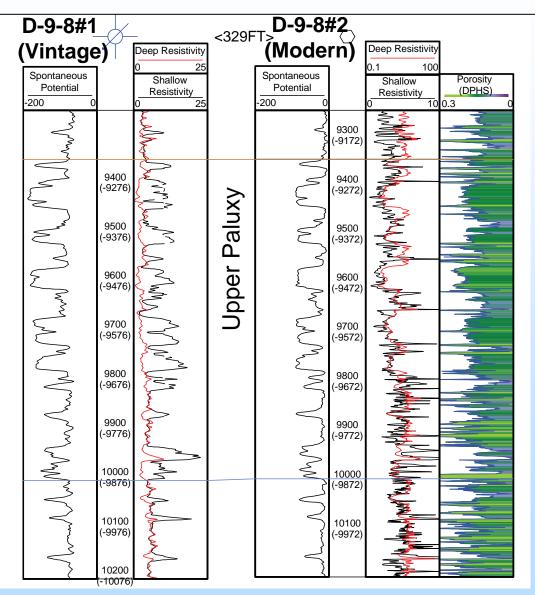
Project Status: Building the Geologic Model

- Potential storage and confining layers were identified and correlated laterally
- Structural closure is present at all horizons from surface through the Donovan

Series **Potential Reservoirs** Stratigraphic Unit **Major Sub Units** and Confining Zones Citronelle Formation **Freshwater Aquifer** Assessed Zone Undifferentiated Freshwater Aquifer Chicasawhay Fm. Base of USDW Tertiary Bucatunna Clay Vicksburg Group Local Confining Unit Jackson Group Minor Saline Reservoir Claiborne Group Talahatta Fm. Saline Reservoir Hatchetigbee Sand Wilcox Group Bashi Marl Saline Reservoir Salt Mountain LS Porters Creek Clav Midway Group **Confining Unit** Selma Group **Confining Unit** Eutaw Formation Minor Saline Reservoir Cretaceous 0 Upper Tusc. Minor Saline Reservoir Upper 10 6 Mid Marine Shale Confining Unit Tuscaloosa Group Jed Pilot Sand Lowe Saline Reservoir Massive sand Washita-Dantzler sand Saline Reservoir Interv Primary Confining Unit Fredericksburg Basal Shale 'Upper' Proposed Injection Paluxy Formation 'Middle' Zone 'Lower' Cretaceous Q Mooringsport Lower Confining Unit Formation Ferry Lake Anhydrite Confining Unit odessa Fm. Oil Reservoir 'Upper' 'Middle' Minor Saline Reservoir Donovan Sand 'Lower' Oil Reservoir

Stratigraphic Column

Advanced Resources International, Inc.

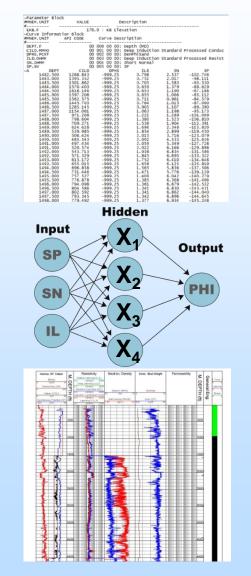

Project Status: Correlation Cross-Sections

A'									Α
(SE)	¢ <0.27MI> -∯<0	06MI> O <0.14M	II> <a> (0.61N)	10.88 ¢ <0.88	IMI> Ø <1.44M	MI> • <	1.82MI> • <1.44	MI> 🔶 <2.14	
Rel Depth (Feet)		SP (m) 25 000 21 000 25 000 25 000 25 000 25 000 25 000 25 000 25 000 25 000 25	5P (m) 500 0 0 5P (m) 500 0 5P (m) 50	SP my 21 S00 0 25 0000 20 0000 25 0000 25 0000000 25 0000 25 00000 25 00000 25 00000 25 000000 00000000 000000000000000000	3P (mi) 0 SH (SHAM) 200 0 SH (SHAM) 4850 25 1000 25				↑ Washita- Fredericksburg
- 0 - 100 - 200 - 300 - 400 - 500 - 600 - 700 - 800 - 900 - 1000 - 1100	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW		MANA MANANA	Montenterthouse and the set of the set	ALLOW WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW			on supply to an a short of the second of the	Paluxy Formation
- 1200 - 1300 - 1400						t i de la companya de			Mooringsport Formation Ferry Lake
- 1500 - 1600		D-9-8_#2	01097198660000	01097199050000	01097198500000	01097198230000	01097000630000	01097200250000	01129200430000
		3-1-1 -1 75				9. (512 diamin			

Project Status: Neural Network

- Most of the legacy wells have resistivity logs only and no porosity logs.
- 3 new wells with modern porosity logs were drilled on well pads with existing abandoned wells.
- These paired wells offer a unique opportunity for using a neural network approach to predict porosity.

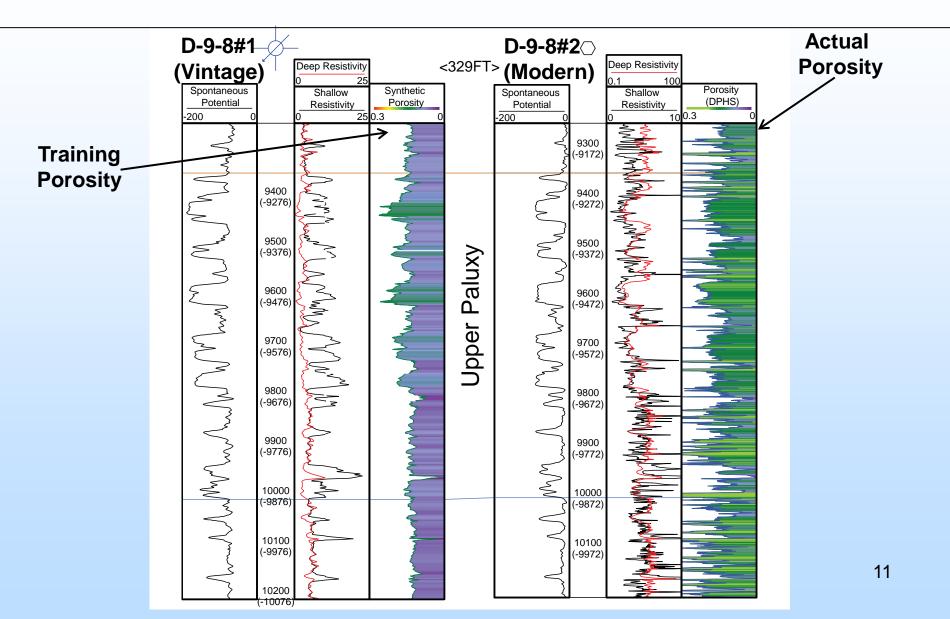
Neural Net: Training & Validation

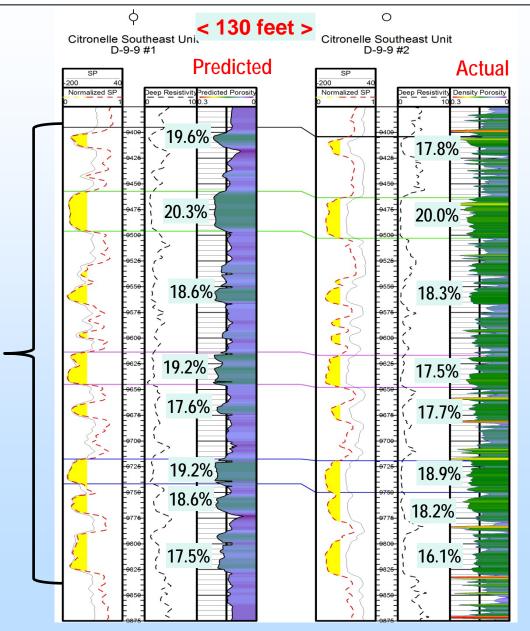

Training neural network utilized data from 2 well pairs in Citronelle SE Unit: D-9-7 #1 & D-9-7 #2 D-9-8 #1 & D-9-8 #2

Input from vintage D-9-7 #1 and D-9-8 #1 wells:

- Spontaneous Potential (SP)
- Short Normal (SN)
- Induction Log (IL)

Output from modern D-9-7 #2 and D-9-8 #2 wells:

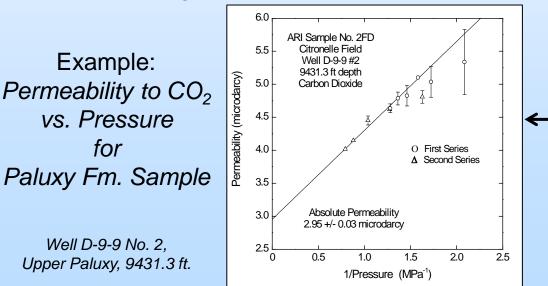

Density Porosity (PHI)


Validation of the neural net utilized data from the third well pair in Citronelle field: D-9-9 #1 & D-9-9 #2

- With weighting factors known, D-9-9 #1 vintage data was input.
- Output from network was compared against modern D-9-9 #2 density porosity data.

Neural Net: Training Results

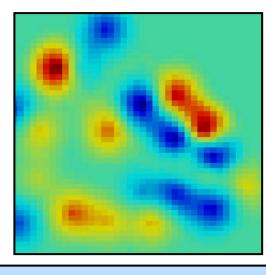
Neural Net: Porosity Prediction

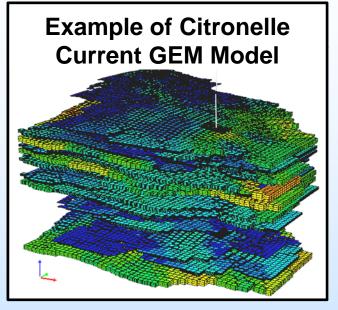

Upper Paluxy Sandstones

- Porosity predicted from Neural Net for D-9-9 #1 compared to actual density porosity from D-9-9 #2 well.
- Average porosity values for selected Upper Paluxy sandstones are shown.
- Average porosity values for Paluxy sandstones for "predicted" and "actual" are very close.
- Larger range between min and max values and finer vertical resolution for actual porosity than for "predicted" porosity.

Project Status: Measuring Caprock Properties

- Absolute permeability and permeability to CO₂ were determined for two Upper Paluxy samples.
- Measurements were made using the Core Lab/TEMCO triaxial core holder at the Caprock Integrity Laboratory of University of Alabama Birmingham.

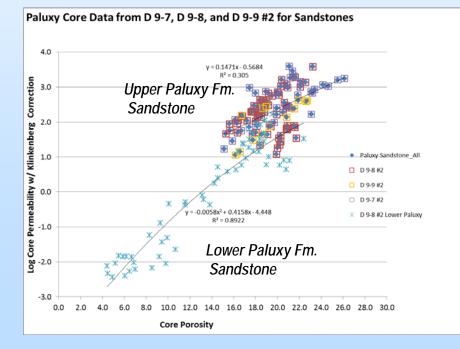


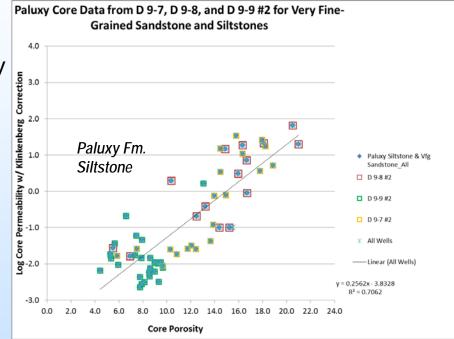


Next Steps: Refining the Geologic Model

- Geostatistics will be used to extrapolate reservoir characterizations from the 36 digitized study wells throughout the entire study area.
- Permeability and porosity transforms from existing core data will be applied to generate permeability maps.
- The geostatistics approach will help extrapolate flow unit heterogeneities across the entire study area.

Example of geostatistical rendering of porosity for an upper Paluxy layer





- Each formation at Citronelle field will be sub-divided into multiple flow units and confining layers.
- This massive geologic model for the entire Citronelle field will be implemented in the *GEM* reservoir simulator.

Next Steps: Predicting Permeability

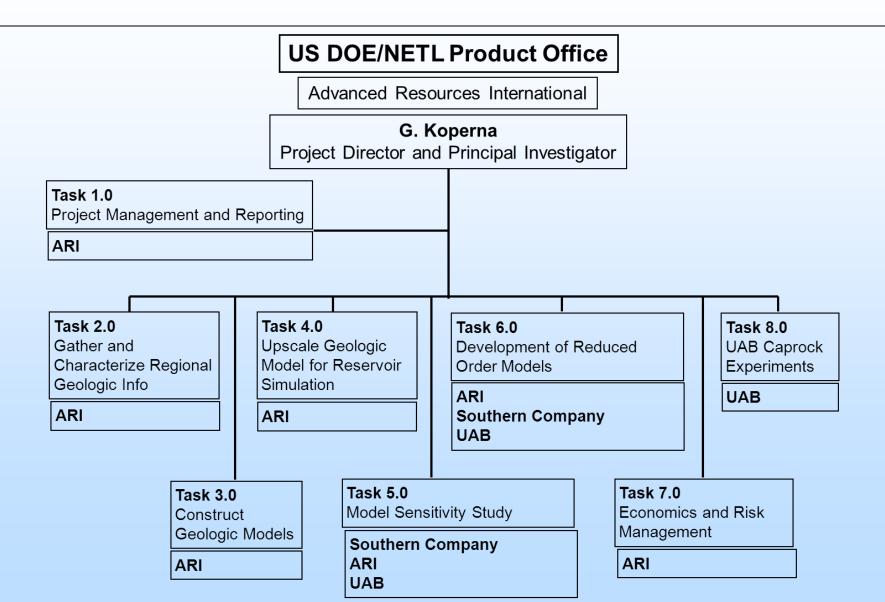
- Porosity-Permeability transforms from core data will be applied to predict permeability and flow unit heterogeneity from porosity.
- Interpretation of flow unit heterogeneity must be constrained by stratigraphy & lithology – particularly shale content

Paluxy Formation at Citronelle Field

Future Plans

- **Sensitivity Study**: Will explore sensitivities such as well design and lateral heterogeneity to maximize storage capacity while minimizing the operation's footprint.
- **Optimization**: Will incorporate economic and risk management considerations which will be overlain on the modeling results to ascertain their financial impact.
- Cap Rock Analysis: Caprock analysis will provide regional seal characteristic data to be used in numerical modeling.
- New Storage Efficiency Factors: Will develop new commercial storage efficiency factors.
- Screening Models: Will develop simplified screening models to cost effectively identify potential commercial storage sites.
- Scoping Level Models: Will develop a scoping level model to provide baseline storage capacity and injectivity and estimate ground deformation, plume extent and pressure build-up.
- **Best Practices Manual**: Will produce a Best Practices Manual for optimized commercial-scale storage.

Accomplishments to Date


- USDOE-NETL kick-off meeting
- Project kick-off meeting at UAB
- Completed geologic model
- Poster presentation at the AAPG meeting in May 2013
- Geologic Characterization review meeting on July 9th
- Successful implementation of the Neural Network approach to predict porosity
- Abstract and presentation accepted for the Carbon Management Technology Conference, October 2013
- Detailed Geologic Characterization report (Deliverable 2.1) finalized
- Refinement of the geologic model using a geostatistical approach is underway

Key Findings/ Lessons Learned

- Can successfully characterize a subsurface volume of 1.9E+13 ft³ for reservoir simulation (56 square miles x 12,000 vertical feet), by combining legacy geophysical log data with modern log data, core data, and state of the art interpretive tools like neural net and geostatistics software.
- Saline reservoirs appear amenable to using a neural net approach to predict porosity from SP & resistivity logs if:
 - the lithology is known,
 - a reliable indicator of shale content is available to constrain the interpretation,
 - modern porosity data are available to train the neural net.
- Reliable permeability data are required to characterize flow unit heterogeneity and to adequately characterize confining units and localized flow barriers and baffles.

Appendix: Organization Chart

Appendix: Gantt Chart

Task Name	Start	Finish			2013				2014				2015			
			2nd Half		1st Half		2nd H		1st Ha		2nd Ha		1st Hal		2nd Ha	
Task 1: Project Management 150,017	Mon 10/1/12	Wed 9/30/15	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr :	3 Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4
Subtask 1.1 – Project Management Plan	Mon 10/1/12 Mon 10/1/12	Wed 9/30/15														
Deliverable 1.1 – Report, Project management plan	Wed 12/5/12	Wed 12/5/12			2/5											-
Deliverable 1.2 – Project Management and Reporting	Mon 12/31/12	Mon 12/31/12		•	12/31											
Deliverable 1.2 – Project Management and Reporting	Mon 12/31/12	Wed 7/1/15			12/31		★		1		, ,	•	1			
Deliverable 1.4 – Best Practices Manual for CO2 storage in the U.S.	Wed 9/30/15	Wed 9/30/15					¥	•	T	•	¥	•	¥	•	Ť	♠ 9/30
Eastern Gulf Coast	Wed 3/30/13	Wed 3/30/13					1		1		1		1		1	♥ 0/00
Deliverable 1.5 – Final project reports	Wed 9/30/15	Wed 9/30/15									1					\$ 9/30
Task 2: Gather and Characterize Regional Geologic Information 66.670	Mon 10/1/12	Fri 3/29/13	ļ													
Deliverable 2.1 – Report, Using neural network algorithms to modernize vintage well logs	Sun 3/31/13	Sun 3/31/13			4	3/31	1									
Task 3: Construct Geologic Models 51,543	Tue 1/1/13	Fri 6/28/13											1		1	
Deliverable 3.1 – Meeting, Geologic data review and critique	Fri 5/31/13	Fri 5/31/13				•	5/31		1		1					
Deliverable 3.2 – Report, Geostatistical analysis of southeastern sediments	Sun 6/30/13	Sun 6/30/13					6/30				1					
Task 4: Upscale Geologic Model for Reservoir Simulation 46,326		Tue 12/31/13									1				1	
Deliverable 4.1 – Meeting, Modeling data review and critique	Fri 8/30/13	Fri 8/30/13					- 4	8/30								
Deliverable 4.2 – Report, Upscaling comparison to geologic data	Tue 12/31/13	Tue 12/31/13							🍐 12/31				1		1	
Decision Point – Demonstration of capability to effectively model geology and subsurface CO2 flow	Mon 9/30/13	Mon 9/30/13					1	● 9/30							1	
Task 5: Model Sensitivity Study 53,180	Tue 10/1/13	Mon 3/30/15					1								1	
Subtask 5.1 – Injection Scenario Simulations	Tue 10/1/13	Mon 3/30/15					1								1	
Deliverable 5.1 – Meeting, Modeling data review and critique	Mon 3/31/14	Mon 3/31/14								lacktrian 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1		1	
Subtask 5.2 – Visualization of Simulation Results	Wed 1/1/14	Mon 3/30/15														
Deliverable 5.2 – Report, Modeling results and storage efficiency factors	Mon 3/30/15	Mon 3/30/15									-					
Task 6: Development of Scoping/Screening Level Models 45,017	Tue 7/1/14	Fri 5/29/15													i	
Deliverable 6.1 – Report, Reduced order model and code module	Sun 5/31/15	Sun 5/31/15					1							*	5/31	
Task: 7: Economics and Risk Management 53,227		Mon 8/31/15													<u> </u>	
Subtask 7.1 – Economic Assessment	Tue 7/1/14	Fri 5/29/15														
Deliverable 7.1 – Report, Economic and risk management modeling results	Mon 8/31/15	Mon 8/31/15					1								•	8/31
Subtask 7.2 – Risk Assessment	Tue 7/1/14	Fri 5/29/15							1							
Task 8: UAB Task - Ensuring Containment 332,877	Mon 10/1/12	Wed 9/30/15														
Subtask 8.1 Measurement of Minimum Capillary Displacement	Mon 10/1/12	Mon 3/31/14							1				1			
Deliverable 8.1 – Measurements of permeability and capillary displacement pressure of cap rock samples	Mon 3/31/14	Mon 3/31/14														
Subtask 8.2 Simulation and Visualization of CO2 Seepage in the absence of Chemical Reactions	Mon 10/1/12	Mon 3/31/14	1													
Deliverable 8.2 - Dynamic visualization of CO2 seepage based on simulations of CO2 behavior in cap rocks, in the absence of chemical reactions	Mon 3/31/14	Mon 3/31/14									1					
Subtask 8.3 Evolution of Cap Rock Properties in the Presence of Carbon Dioxide	Tue 4/1/14	Wed 9/30/15														
Deliverable 8.3 - Measurements and modeling of changes in cap rock properties and CO2 injection, migration, and trapping in the presence of chemical reactions, including cumulative CO2 loss	Wed 9/30/15	Wed 9/30/15														9/30

Appendix: Bibliography

- Geologic Characterization for the U.S. SECARB Anthropogenic Test; Combining Modern and Vintage Well Data to Predict Reservoir Properties, Shawna R. Cyphers, Hunter Jonsson, and George J. Koperna, Jr., poster presentation, American Association of Petroleum Geologists, Annual Convention & Exhibition, Pittsburgh, PA, May 19-22, 2013.
- Constructing a Geologic Model to Simulate Commercial Scale CO₂ Injection and Optimization of Storage Capacity in the Southeastern United States, Hunter Jonsson, Shawna Cyphers, George Koperna, Robin Petrusak, presentation abstract accepted for Carbon Management Technology Conference, CMTC 2013, Alexandria, Virginia, October 21 – 23, 2013